\(\int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx\) [395]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 143 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=-\frac {2 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 a A+b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (A b+a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d} \]

[Out]

2/3*b*B*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2*(A*b+B*a)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2*(A*b+B*a)*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*(3
*A*a+B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/
2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {4082, 3872, 3856, 2720, 3853, 2719} \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {2 (a B+A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 a A+b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 (a B+A b) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d} \]

[In]

Int[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(-2*(A*b + a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(3*a*A + b*B)*Sqrt[Cos
[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*(A*b + a*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x
])/d + (2*b*B*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2}{3} \int \sqrt {\sec (c+d x)} \left (\frac {1}{2} (3 a A+b B)+\frac {3}{2} (A b+a B) \sec (c+d x)\right ) \, dx \\ & = \frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+(A b+a B) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{3} (3 a A+b B) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 (A b+a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+(-A b-a B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left ((3 a A+b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 (3 a A+b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (A b+a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\left ((-A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 a A+b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (A b+a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.59 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.73 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-3 (A b+a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {(b B+3 (A b+a B) \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )}{3 d} \]

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-3*(A*b + a*B)*EllipticE[(c + d*x)/2, 2] + (3*a*A + b*B)*EllipticF[(
c + d*x)/2, 2] + ((b*B + 3*(A*b + a*B)*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3/2)))/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(179)=358\).

Time = 24.89 (sec) , antiderivative size = 401, normalized size of antiderivative = 2.80

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+2 B b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {2 \left (A b +B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(401\)
parts \(-\frac {2 \left (A b +B a \right ) \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B b \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(538\)

[In]

int(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
2*B*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)
^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(A*b+B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x
+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)))/sin(1/2*d*x+1/2*c)/(
2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.43 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {\sqrt {2} {\left (-3 i \, A a - i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, A a + i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a + i \, A b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a - i \, A b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (B b + 3 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-3*I*A*a - I*B*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(
2)*(3*I*A*a + I*B*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I*B*a
 + I*A*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*s
qrt(2)*(-I*B*a - I*A*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*
x + c))) + 2*(B*b + 3*(B*a + A*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c))

Sympy [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int \left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(sec(d*x+c)**(1/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))*sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B/cos(c + d*x))*(a + b/cos(c + d*x))*(1/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x))*(a + b/cos(c + d*x))*(1/cos(c + d*x))^(1/2), x)